

Alambre de Cobre Desnudo

DESCRIPCIÓN GENERAL

Alambre de cobre desnudo en temple duro, semiduro o suave.

ESPECIFICACIONES

- NOM-063-SCFI Productos eléctricos- conductores requisitos de seguridad.
- NMX-J-002-ANCE Alambres de cobre duro para usos eléctricos.
- NMX-J-035-ANCE Alambres de cobre semiduro para usos eléctricos.
- NMX-J-036-ANCE Alambres de cobre suave para usos eléctricos.
- ASTM B-1 Standard Specification for Hard-Drawn Copper Wire.
- ASTM B-2 Standard Specification for Medium-Hard-Drawn Copper Wire.
- ASTM B-3 Standard Specification Soft or Annealed Cooper Wire.

CERTIFICACIONES

PRINCIPALES APLICACIONES

- Los alambres de cobre en función de su temple se usan sobre aisladores en líneas de distribucion eléctrica
- En conexiones de neutros y puestas a tierra de equipos y sistemas eléctricos.

CARACTERÍSTICAS

- El material de los alambres es cobre de alta pureza con un contenido mínimo de 99,9% de cobre.
- Se fabrican en calibres de 0,051 a 107,2 mm2 (30 a 4/0 AWG).
- Temple duro, semiduro o suave dependiendo de las aplicaciones.
- Estos productos se ofrecen en los siguientes empaques:
- En rollo: Calibres de 5,26 a 33,62 mm2 (10 a 2 AWG).
- En carrete: Todos los calibres.

- Por su alta conductividad eléctrica el cobre es el metal ideal para las instalaciones eléctricas.
- Los conductores de cobre son resistentes a la corrosión.
- Los alambres de cobre ofrecen una gran resistencia mecánica.

Alambre de Cobre Desnudo

						ALA	MBRE VIAK	ON DE COB	RE DE	SNUD	o					
						7	EMPLE DU	RO		TEI	MPLE SEMI	DURO		т	EMPLE SUA	VE
Calibre AWG	Area nominal de la sección transversal	Diámetro Nominal	Peso aprox.	Capacidad de conducción de corriente (1)	de ar	ero tículo	Esfuerzo por tensióna la ruptura nominal	Resistencia eléctrica CD a 20°C		nero rtículo	Esfuerzo por tensióna la ruptura mínimo	Resistencia aeléctrica CD a 20°C	Nún de ar	nero rtículo	Esfuerzo por tensióna la ruptura mínimo (2)	Resistencia eléctrica CD a 20°C
	mm²	mm	kg / km	Ampere	Carr.	Rollo	MPa	ohm / km	Carr.	Rollo	MPa	ohm / km	Carr.	Rollo	MPa	ohm / km
30	0,051	0,254	0,450										DL34			340
29	0,065	0,287	0,575										DL35			266
28	0,081	0,320	0,715										DL36			214
27	0,102	0,361	0,908										Q210			169
26	0,128	0,404	1,14										DL37			135
25	0,163	0,455	1,44										DL38			106
24	0,205	0,511	1,82										Z594			84,2
23	0,259	0,574	2,30										DL39			66,6
22	0,324	0,643	2,88										A062		210	53,2
21	0,412	0,724	3,66										DL40		210	41,9
20	0,519	0,813	4,61		-				-				A061		210	33,2
19	0,653	0,912	5,81		-				-				DL41		210	26,4
18	0,823	1,024	7,32		CZ94		460	21,8	D632		365	21,7	A060		260	21,0
17	1,040	1,151	9,24		CZ95		460	17,3	DL15		365	17,2	DL42		265	16,6
16	1,307	1,290	11,62		CZ96		460	13,7	DL16		360	13,6	DL43		265	13,2
15	1,651	1,450	14,69		CZ97		455	10,9	DL17		360	10,8	DL44		265	10,4
14	2,082	1,628	18,51		U666		455	8,63	DL18		355	8,60	J041		265	8,28
13	2,627	1,829	23,35		CZ98		455	6,82	DL19		355	6,79	DL45		265	6,56
12	3,307	2,052	29,41		G589		455	5,41	O940		350	5,38	J040		265	5,21
11	4,169	2,304	37,06		CZ99		450	4,30	DL20		350	4,27	P155		265	4,14
10	5,260	2,588	46,77		DL00	A028	445	3,41	DL21	A044	345	3,39	J039	A057	265	3,28
9	6,633	2,906	58,95		DL01	DL09	445	2,70	DL22	DL32	345	2,69	O330	A056	260	2,60
8	8,367	3,264	74,38	90	W448	A026	440	2,14	DL23	A042	340	2,13	P154	A055	260	2,06
7	10,55	3,665	93,80	110	DL02	DL10	435	1,70	DL24	A041	340	1,69	W785	DL51	255	1,63
6	13,30	4,115	118,2	120	1864	A024	430	1,35	C548	A040	340	1,34	P153	A053	255	1,30

5	16,76	4,620	149,0	140	DL03	DL11	425	1,07	DL25	DL33	335	1,06	DL46	DL52	255	1,03
4	21,15	5,189	188,0	170	J496	A022	415	0,848	C549	A038	335	0,843	G052	A051	255	0,815
3	26,67	5,827	237,1	190	DL04	DL12	405	0,673	DL26	A037	330	0,669	P152	DL53	255	0,647
2	33,62	6,543	298,9	220	X066	A020	395	0,533	DL27	A036	325	0,531	H820	A049	255	0,513
1	42,41	7,348	377,0	270	DL05		385	0,423	DL28		315	0,421	DL47		255	0,407
1/0	53,48	8,252	475,5	310	DL06		375	0,335	T592		310	0,333	DL48		250	0,322
2/0	67,43	9,266	599,5	360	V625		365	0,263	DL29		305	0,262	N216		250	0,256
3/0	85,01	10,40	755,8	420	DL07		350	0,209	DL30		295	0,208	DL49		250	0,203
4/0	107,2	11,68	953,2	480	DL08		340	0,166	DL31		290	0,165	DL50		250	0,161

NOTA:Datos aproximados sujetos a tolerancias de manufactura.

⁽¹⁾ Calculada para un conductor desnudo, expuesto al sol, operando a una temperatura de 75 °C. Temperatura ambiente: 25 °C, velocidad del viento 0,61 m/s y emisividad térmica relativa de la superficie del conductor: 0,5

⁽²⁾ Estos valores se dan como información ya que la NOM-063 no los especifica.

Alambre de Cobre Desnudo

Alambres y Cables de Aluminio Desnudo AAC

DESCRIPCIÓN GENERAL

Alambre y cable de aluminio 1 350 desnudo en temple duro, AAC (All Aluminum Conductor).

ESPECIFICACIONES

- NOM-063-SCFI Productos eléctricos conductores-requisitos de seguridad.
- NMX-J-027-ANCE Alambres de aluminio duro para usos eléctricos.
- NMX-J-032-ANCE Cables de aluminio con cableado concéntrico para usos eléctricos.
- ASTM B-230 Standard Specification for Aluminum 1 350-H19 Wire for Electrical Purpose.

CERTIFICACIONES

PRINCIPALES APLICACIONES

- Los alambres y cables Viakon® de aluminio desnudo se usan en distribución aérea, en zonas urbanasy por lo general en instalaciones con distancias interpostales cortas.
- Los alambres AAC son utilizados en amarres de los conductores al aislador.

CARACTERÍSTICAS

- Los alambres y cables de aluminio se fabrican con aleación 1 350, en temple duro (H19).
- Los cables de aluminio desnudo (AAC) se construyen en cableado concéntrico.
- Se fabrican en los siguientes calibres:
- Alambres de 5,26 a 33,62 mm2 (10 a 2 AWG).
- Cables de 21,15 a 805,7 mm2 (4 AWG a 1 590 kcmil).

VENTAJAS

 El bajo peso del aluminio en comparación con el del cobre permite reducir el costo de manejo, herrajes, postes, etc.

INFORMACIÓN COMPLEMENTARIA

- Estos productos se ofrecen en los siguientes empaques:
- Alambres
- En rollo: Calibres de 5,26 a 33,62 mm2 (10 a 2 AWG).
- En carrete: Todos los calibres.
- Cables:
- En carrete todos los calibres

Alambres y Cables de Aluminio Desnudo AAC

			ALAN	IBRE VIAKO	N® DE ALUMINI	O DESNUDO (AAC)	TEMPLE DURO		
Número de	artículo	Calibre AWG	Área nominal de la sección transversal	Diámetro nominal	Peso aproximado	Capacidad de conducción de corriente(1)	Carga prom. mínima deruptura por tensió		Calibre equivalente en Cobre
Carretes	Rollos		mm²	mm	kg / km	Ampere	kN	ohm / km	AWG
DL90	F018	10	5,260	2,59	14,2		1	5,35	12
DL91	V093	9	6,633	2,91	17,9		1	4,25	11
DL92	F017	8	8,367	3,26	22,6	70	1	3,37	10
DL93	DL98	7	10,55	3,67	28,5	85	2	2,67	9
DL94	F016	6	13,30	4,11	36,0	104	2	2,12	8
DL95	F015	5	16,76	4,62	45,3	120	2	1,68	7
C550	F014	**4	21,15	5,19	57,2	138	3	1,33	6
DL96	DL99	3	26,67	5,83	72,1	159	4	1,06	5
DL97	DM00	2	33,62	6,54	90,9	185	5	0,84	4

NOTA: Datos aproximados sujetos a tolerancias de manufactura.

Alambres y Cables de Aluminio Desnudo AAC

								0		
Número de artículo	Designación	Calibre AWG / kcmil	Número de hilos	Área nominal de la sección transversal	Diámetro nominal	Peso aproximado	Capacidad de conducción de corriente(1)	Carga nominal de ruptura por tensión	Resistencia eléctrica CD a 20°C	Calibre equivalente en Cobre
				mm²	mm	kg / km	Ampere	kN	ohm / km	AWG / kcmil
E655	ROSE	4	7	21,15	5,88	58,31	138	3,92	1,36	6
E657	IRIS	2	7	33,62	7,42	92,69	185	6,00	0,855	4
E658	PANSY	1	7	42,41	8,33	116,9	214	7,30	0,678	3
E659	* POPPY	1/0	7	53,48	9,36	147,4	247	8,86	0,537	2
E660	ASTER	2/0	7	67,43	10,51	185,9	286	11,70	0,426	1
E661	* PHLOX	3/0	7	85,01	11,80	234,4	330	13,52	0,338	1/0
E662	OXLIP	4/0	7	107,2	13,25	295,6	382	17,03	0,268	2/0
E663	DAISY	266,8	7	135,2	14,88	372,5	442	21,49	0,213	3/0
BC69	* LAUREL	266,8	19	135,2	15,05	372,8	442	22,15	0,213	3/0
E665	* TULIP	**336,4	19	170,5	16,90	470,1	513	27,36	0,169	4/0
E666	CANNA	397,5	19	201,4	18,37	555,3	570	31,63	0,143	250
E667	* COSMOS	477,0	19	241,7	20,13	666,4	639	37,19	0,119	300
E668	ZINNIA	500,0	19	253,4	20,61	698,6	670	38,97	0,113	314,5
DM01	DAHLIA	556,5	19	282,0	21,74	777,5	703	43,38	0,102	350
DM02	ORCHID	636,0	37	322,3	23,31	888,6	765	50,71	0,089 2	400
Y814	VIOLET	715,5	37	362,6	24,72	999,7	823	56,94	0,079 2	450
E672	PETUNIA	750,0	37	380,0	25,31	1 048	863	58,27	0,075 6	472
E673	ARBUTUS	795,0	37	402,8	26,06	1 111	874	61,83	0,071 3	500
E675	MAGNOLIA	954,0	37	483,4	28,55	1 333	982	72,95	0,059 4	600
E676	BLUEBELL	1 033,5	37	523,7	29,72	1 444	1 031	78,74	0,054 9	650
E677	MARIGOLD	1 113,0	61	564,0	30,88	1 555	1 079	87,63	0,050 9	700
E678	HAWTHORN	1 192,5	61	604,3	31,97	1 666	1 125	93,86	0,047 6	750
E679	NARCISSUS	1 272,0	61	644,5	33,01	1 777	1 170	97,86	0,044 6	800
E680	COLUMBINE	1 351,5	61	684,8	34,03	1 888	1 212	104,09	0,042 0	850
E681	CARNATION	1 431,0	61	725,1	35,01	1 999	1 254	108,09	0,039 6	900
E682	GLADIOLUS	1 510,5	61	765,4	35,97	2 110	1 295	113,88	0,037 5	950
E683	COREOPSIS	1 590,0	61	805,7	36,91	2 221	1 334	120,10	0,035 7	1 000

NOTA: Datos aproximados sujetos a tolerancias de manufactura (1) Calculada para un conductor desnudo, expuesto al sol, operando a una temperatura de 75 °C. Temperatura ambiente: 25 °C, velocidad del viento: 0,61 m/s y emisividad térmica relativa de la superficie del conducto Aluminum Electrical Conductor Handbook	r:, 5)

Alambres y Cables de Aluminio Desnudo AAC

Cable Acero Galvanizado Alta Resistencia.

DESCRIPCIÓN GENERAL

Cable de acero galvanizado desnudo de alta resistencia.

ESPECIFICACIONES

- CFE A3300-06 Cables de acero galvanizado.
- ASTM-A-475 Zinc-Coated Steel Wire Strand (Cables de acero galvanizado).

PRINCIPALES APLICACIONES

• Se utilizan en retenidas para postes de las instalaciones eléctricas.

CARACTERÍSTICAS

- El material de los alambres es acero grado alta resistencia con un recubrimiento de zinc clase B.
- Los cables se fabrican en construcción concéntrica.
- Se fabrican en diámetros de 6,35 a 12,7 mm.
- Estos productos se ofrecen en empaques de carrete.

- Los alambres de acero galvanizado son resistentes a la corrosión.
- Ofrecen una gran resistencia mecánica.
- Mayor flexibilidad por su construcción.

Cable Acero Galvanizado Alta Resistencia

		CABLE VIAKON®	DE ACERO GALVANIZ	ADO DE ALTA RESISTENCI	A PARA RETENIDA	
Número de Artículo	Diámetro	Número de hilos	Diámetro de cada hilo	Carga mínima de ruptura por tensión	Contenido mínimo del recubrimiento de zinc	Peso total aproximado
	mm (pulg)		mm	kN	g / m2	kg / km
J411	6,35 (1/4)	7	2,03	21,140	366	180,06
J417	7,93 (5/16)	7	2,64	35,600	488	305,07
J420	9,52 (3/8)	7	3,04	48,059	519	406,25
J421	12,7 (1/2)	19	2,54	84,993	427	750,00

NOTA: Datos aproximados sujetos a tolerancias de manufactura. (1) Calculada para un conductor desnudo, expuesto al sol, operando a una temperatura de 75 °C. Temperatura ambiente: 25°C, velocidad del viento: 0,61 m/s y emisividad térmica relativa de la superficie del conductor: 5, Basada en datos de Aluminum Association.

Cable Acero Galvanizado Alta Resistencia.

Cable Acero Galvanizado Grado Común para Retenida

DESCRIPCIÓN GENERAL

Cable de acero galvanizado desnudo grado común.

ESPECIFICACIONES

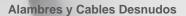
• ASTM-A-475 Zinc-Coated Steel Wire Strand (Cables de acero galvanizado).

PRINCIPALES APLICACIONES

• Se utilizan en retenidas para postes de las instalaciones eléctricas.

CARACTERÍSTICAS

- El material de los alambres es acero grado común con un recubrimiento de zinc clase A.
- Los cables se fabrican en construcción concéntrica.
- Se fabrican en diámetros de 6,35 a 12,7 mm.
- Estos productos se ofrecen en empaques de rollos y carretes.


- Los alambres de acero galvanizado son resistentes a la corrosión.
- Ofrecen una gran resistencia mecánica.
- Mayor flexibilidad por su construcción.

Cable Acero Galvanizado Grado Común Para Retenida

			CABLE VIAKON®	DE ACERO GALVAN	IZADO GRADO COMUN PAI	RA RETENIDA	
Número de	e Artículo	Diámetro	Número de hilos	Diámetro de cada hilo	Carga mínima de ruptura por tensión	Contenido mínimo del recubrimiento de zinc	Peso total aproximado
Carrete	Rollos	mm (pulg)		mm	kN	g / m2	kg / km
N812		4,76 (3/16)	7	1,57	5,115	153	108,27
N848	A301	6,35 (1/4)	7	2,03	8,452	183	180,45
N461	A300	7,94 (5/16)	7	2,64	14,234	244	305,12
N462	A299	9,52 (3/8)	7	3,05	18,905	259	406,82
	A298	12,7 (1/2)	7	4,19	32,917	275	767,72

NOTA: Datos aproximados sujetos a tolerancias de manufactura.

Cable Acero Galvanizado Gra

Cable de Aluminio Desnudo con Alma de Acero ACSR

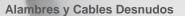
DESCRIPCIÓN GENERAL

Cable de aluminio 1 350 desnudo en temple duro con alma de acero galvanizado, tipo ACSR

ESPECIFICACIONES

- NOM-063-SCFI Productos eléctricos- conductores requisitos de seguridad.
- NMX-J-058 Cable de aluminio con cableado concéntrico y alma de acero (ACSR).
- ASTM B-232 Concentric Lay Stranded Aluminum Conductors, Coated Steel Reinforced

CERTIFICACIONES


PRINCIPALES APLICACIONES

- Los cables ACSR encuentran su campo de aplicación en las líneas aéreas de transmisión y subtransmisión de energía eléctrica a grandes distancias.
- Los cables ACSR también pueden ser aislados o semiaislados cuando se utilizan en zonas arboladas.

CARACTERÍSTICAS

- Los cables ACSR se construyen en cableado concéntrico con un alma formada por uno o varios alambres de acero galvanizado.
- Sobre el alma de acero se colocan los alambres de aluminio aleación 1 350, temple duro (H19).
- Se fabrican en calibres de 13,30 a 901,9 mm2 (6 AWG a 1 590 kcmil).
- Estos productos se ofrecen empacados en carrete de madera.

- El bajo peso del aluminio en comparación con el del cobre permite reducir el costo de manejo, herrajes, postes, etc.
- El alma de acero galvanizado se selecciona para soportar las tensiones mecánicas requeridas.

Cable de Aluminio Desnudo con Alma de Acero ACSR

			C	ABLE VIAKO	N® DE A	LUMINIO DE	ESNUDO CON	ALMA DE A	CERO (A	CSR)			
Número de artículo	Designaciór	Calibre AWG/ kcmil	Hilos de Aluminio Núm.	Diámetro nominal	Hilos de Acero Núm.	Diámetro nominal	Area nominal de la sección transversal	Diámetro total nominal	Peso aprox.	Capacidad de conducción de corriente (1)	Carga nominal de ruptura por tensiór	Resistencia eléctrica CD a 20°C	Calibre equivalente en Cobre
				mm		mm	mm²	mm	kg/km	Ampere	kg	ohm / km	AWG/kcmi
D920	TURKEY	6	6	1,68	1	1,68	13,30	5,04	53,70	105	540	2,15	8
D919	THRUSH	5	6	1,89	1	1,89	16,76	5,67	68,00	120	677	1,71	7
D918	SWAN	4	6	2,12	1	2,12	21,15	6,36	85,50	140	846	1,35	6
DM03	SWALLOW	3	6	2,38	1	2,38	26,67	7,14	107,8	160	1 044	1,08	5
D916	** SPARROW	2	6	2,67	1	2,67	33,62	8,01	135,7	185	1 292	0,853	4
D915	ROBIN	1	6	3,00	1	3,00	42,41	9,00	171,3	210	1 618	0,674	3
D914	** RAVEN	1/0	6	3,37	1	3,37	53,48	10,11	216,2	240	1 986	0,535	2
D913	QUAIL	2/0	6	3,78	1	3,78	67,43	11,34	272,0	275	2 398	0,424	1
D912	** PIGEON	3/0	6	4,25	1	4,25	85,01	12,75	344,3	315	2 996	0,336	1/0
D911	** PENGUIN	4/0	6	4,77	1	4,77	107,2	14,31	433,1	360	3 776	0,267	2/0
D909	* OWL	266,8	6	5,36	7	1,79	135,2	16,07	511,1	460	4 330	0,208	3/0
DM04	WAXWING	266,8	18	3,09	1	3,09	135,2	15,46	430,4	450	3 123	0,213	3/0
D910	** PARTRIDGE	266,8	26	2,57	7	2,00	135,2	16,30	545,4	455	5 121	0,214	3/0
DM05	OSTRICH	300,0	26	2,73	7	2,12	152,0	17,27	614,2	490	5 755	0,190	188,7
D908	* PIPER	300,0	30	2,54	7	2,54	152,0	17,78	699,3	500	6 999	0,187	188,7
U887	MERLIN	336,4	18	3,47	1	3,47	170,5	17,35	542,8	520	3 939	0,169	4/0
D905	** LINNET	336,4	26	2,89	7	3,25	170,5	18,29	689,9	530	6 423	0,170	4/0
D906	ORIOLE	336,4	30	2,69	7	2,69	170,5	18,83	784,5	535	7 887	0,170	4/0
D903	IBIS	397,5	26	3,14	7	2,44	201,4	19,89	813,4	585	6 648	0,143	250,0
D904	LARK	397,5	30	2,92	7	2,92	201,4	20,44	924,4	595	9 245	0,144	250,0
AW82	PELICAN	477,0	18	4,14	1	4,14	241,7	20,70	772,7	645	5 318	0,119	300,0
DM06	FLICKER	477,0	24	3,58	7	2,39	241,7	21,49	914,6	655	7 801	0,119	300,0
D901	** HAWK	477,0	26	3,44	7	2,67	241,7	21,77	975,8	660	8 825	0,119	300,0
D902	HEN	477,0	30	3,20	7	3,20	241,7	22,40	1 110	665	10 743	0,120	300,0
D900	* HERON	500,0	30	3,28	7	3,28	253,4	22,95	1 166	690	11 090	0,112	314,5

AW81	OSPREY	556,5	18	4,47	1	4,47	282,0	22,35	900,8	710	6 265	0,102	350,0
									,				
A811	PARAKEET	556,5	24	3,87	7	2,58	282,0	23,22	1 068	720	9 025	0,102	350,0
D898	DOVE	556,5	26	3,72	7	2,89	282,0	23,55	1 142	725	10 322	0,102	350,0
D899	EAGLE	556,5	30	3,46	7	3,46	282,0	24,22	1 228	735	12 550	0,103	350,0
DM07	PEACOCK	605,0	24	4,03	7	2,69	306,6	24,19	1 159	760	9 812	0,094 1	380,5
D895	* DUCK	605,0	54	2,69	7	2,69	306,6	24,19	1 158	770	10 206	0,092 5	380,5
DM08	ROOK	636,0	24	4,14	7	2,76	322,3	24,84	1 222	785	10 322	0,089 5	400,0
D893	GROSBEAK	636,0	26	3,97	7	3,97	322,3	27,81	1 574	790	11 444	0,089 8	400,0
D894	EGRET	636,0	30	3,70	7	3,70	322,3	25,90	1 484	795	14 341	0,089 8	400,0
D892	* GOOSE	636,0	54	2,76	7	2,76	322,3	24,80	1 218	770	10 727	0,088 3	400,0
Q721	FLAMINGO	666,6	24	4,23	7	2,82	337,8	25,38	1 276	810	10 797	0,085 4	419,0
D891	* GULL	666,6	54	3,20	7	1,78	337,8	24,54	1 334	800	11 136	0,085 4	419,0
DM09	STARLING	715,5	26	4,21	7	3,28	362,5	26,68	1 465	850	12 886	0,079 8	450,0
D890	REDWING	715,5	30	3,92	19	2,35	362,5	27,72	1 522	860	15 696	0,071 6	450,0
D888	* CROW	715,5	54	2,92	7	2,92	362,5	26,31	1 370	830	11 952	0,071 6	450,0
D886	** DRAKE	795,0	26	4,44	7	3,45	402,8	28,11	1 626	905	14 283	0,071 6	500,0
D887	MALLARD	795,0	30	4,14	19	2,48	402,8	28,95	1 838	915	17 463	0,071 8	500,0
DM10	TERN	795,0	45	3,38	7	2,25	402,8	27,03	1 336	885	9 968	0,071 6	500,0
DM11	CONDOR	795,0	54	3,08	7	3,08	402,8	27,72	1 522	895	12 906	0,071 6	500,0
D884	* CRANE	874,5	54	3,23	7	3,23	443,1	29,10	1 676	950	14 243	0,064 3	550,0
D883	** CANARY	900,0	54	3,28	7	3,28	456,0	29,52	1 726	965	14 416	0,063 3	566,0
DM12	RAIL	954,0	45	3,70	7	2,47	483,4	29,61	1 603	990	11 884	0,059 7	600,0
D882	CARDINAL	954,0	54	3,38	7	3,38	483,4	30,48	1 833	1 005	15 295	0,059 7	600,0
DM13	ORTOLAN	1 033,5	45	3,85	7	2,57	523,7	30,81	1 735	1 040	12 632	0,055 1	650,0
D881	CURLEW	1 033,5	54	3,51	7	3,51	523,7	31,59	1 976	1 055	16 142	0,055 1	650,0
Q736	** BLUEJAY	1 113,0	45	4,00	7	2,66	564,0	31,98	1 877	1 090	13 580	0,051 1	700,0
D880	FINCH	1 113,0	54	3,65	19	2,19	564,0	32,85	2 133	1 100	17 834	0,051 4	700,0
DM14	BUNTING	1 192,5	45	4,14	7	2,76	604,2	33,12	2 005	1 135	14 575	0,047 7	750,0
D879	GRACKLE	1 192,5	54	3,77	19	2,27	604,2	33,97	2 280	1 150	18 919	0,048 0	750,0
DM15	BITTERN	1 272,0	45	4,27	7	2,85	644,5	34,17	2 134	1 180	15 543	0,044 8	800,0
D878	PHEASANT	1 272,0	54	3,90	19	2,34	644,5	35,10	2 435	1 195	19 849	0,045 0	800,0
DM16	DIPPER	1 351,5	45	4,40	7	2,93	684,8	35,19	2 264	1 225	16 484	0,042 1	850,0
D877	MARTIN	1 351,5	54	4,02	19	2,41	684,8	36,17	2 587	1 240	21 071	0,042 3	850,0
DM17	BOBOLINK	1 431,0	45	4,53	7	3,02	725,1	36,24	2 401	1 270	17 282	0,039 8	900,0
D876	PLOVER	1 431,0	54	4,14	19	2,48	725,1	37,24	2 742	1 285	22 312	0,040 0	900,0
DM18	NUTHATCH	1 510,5	45	4,65	7	3,10	765,4	37,20	2 530	1 310	18 231	0,037 7	950,0
D875	PARROT	1 510,5	54	4,25	19	2,55	765,4	38,25	2 892	1 325	23 571	0,037 9	950,0
DM19	LAPWING	1 590,0	45	4,78	7	3,18	805,7	38,22	2 672	1 350	19 188	0,035 8	1 000
D874	FALCON	1 590,0	54	4,36	19	2,62	805,7	39,26	3 046	1 370	24 848	0,036 0	1000

NOTA: Datos aproximados sujetos a tolerancias de manufactura (1) Calculada para un conductor desnudo, expuesto al sol y al viento, operando a una temperatura de 75 °C. Temperatura ambiente: 25 °C, y velocidad del viento de 61 m/. Basada en los datos de Aluminum Association so productos marcados con (*) cumplen exclusivamente con la siguiente especificación: CSA C49,1 Aluminum Conductors Steel Reinforced (ACSR)

Cable de Aluminio Desnudo con Alma de Acero ACSR

Cable de Aluminio Desnudo con Alma de Acero ACSR/AS

DESCRIPCIÓN GENERAL

Cable de aluminio 1 350 desnudo en temple duro con alma de acero recubierto de aluminio soldado (ACSR/AS o ACSR/AW).

ESPECIFICACIONES

- CFE E0000-18 Cables ACSR/AS
- ASTM B-549 Concentric Lay Stranded Aluminum Conductors, Aluminum-Clad Steel Reinforced (ACSR/AW).

PRINCIPALES APLICACIONES

 Los cables ACSR/AS encuentran su campo de aplicación en las líneas aéreas de transmisióy subtransmisión de energía eléctrica a grandes distancias en zonas con problemas de corrosióy contaminación como zonas costeras o zonas industriales.

CARACTERÍSTICAS

- Los cables ACSR/AS se construyen en cableado concéntrico con un alma formada por uno o varios alambres de acero con recubrimiento de aluminio soldado.
- Sobre el alma de acero se colocan los alambres de aluminio aleación 1 350, temple duro (H19).
- Se fabrican en calibres de 33,62 a 564,0 mm2 (2 AWG a 1 113 kcmil).
- Estos productos se ofrecen empacados de carrete de madera.

- El bajo peso del aluminio en comparación con el del cobre permite reducir el costo de manejo, herrajes, postes, etc.
- El alma de acero recubierto de aluminio soldado se selecciona para soportar las tensiones mecánicas requeridas.
- El recubrimiento de aluminio en los alambres de acero proporciona una protección contra la corrosión.

Cable de Aluminio Desnudo con Alma de Acero ACSR/AS

		CABLE \	/IAKON® DE	ALUMIN	IIO DESNUD	O CON ALMA DI	E ACERO RE	CUBIER	TOS CON ALUN	IINIO (ACSR	/AS)	
Designación	Calibre AWG o kcmil	Hilos de Aluminio Núm.	Diámetro nominal	Hilos de Acero Núm.	Diámetro nominal	Area nominal de la sección transversal	Diámetro total nominal	Peso aprox.	Capacidad de conducción de corriente (1)	Carga nominal de ruptura por tensión	Resistencia eléctrica CD a 20°C	Calibre equivalente en Cobre
			mm		mm	mm²	mm	kg / km	Ampere	kg	ohm / km	AWG/kcmil
SPARROW	2	6	2,67	1	3	33,62	8,01	129	180	12,3	0,853	4
RAVEN	1/0	6	3,37	1	3	53,48	10,11	205	230	18,9	0,535	2
PIGEON	3/0	6	4,25	1	4	85,01	12,75	326	300	28,0	0,336	1/0
PENGUIN	4/0	6	4,77	1	5	107,2	14,31	411	340	34,2	0,267	2/0
PARTRIDGE	266,8	26	2,57	7	2	135,2	16,31	520	465	48,0	0,214	3/0
LINNET	336,4	26	2,89	7	3	170,5	18,29	654	535	60,0	0,170	4/0
HAWK	477,0	26	3,44	7	3	241,7	21,79	928	670	84,3	0,119	300,0
DRAKE	795,0	26	4,44	7	3	402,8	28,14	1 549	920	136,0	0,071 6	500,0
CANARY	900,0	54	3,28	7	3	456,0	29,52	1 653	980	138,0	0,063 3	566,0
BLUEJAY	1 113,0	45	4,00	7	3	564,0	31,98	1 819	1 095	130,0	0,051 1	700,0

NOTA: Datos aproximados sujetos a tolerancias de manufactura. (1) Calculada para un conductor desnudo, expuesto al sol, operando a una temperatura de 75 °C. Temperatura ambiente: 25°C, velocidad del viento: 0,61 m/s y emisividad térmica relativa de la superficie del conductor: 50, Basada en datos de Aluminum Association.

Cable de Aluminio Desnudo con Alma de Acero ACSR/AS

Cable de Cobre Desnudo

DESCRIPCIÓN GENERAL

Cable de cobre desnudo en temple duro, semiduro o suave.

ESPECIFICACIONES

- NOM-063-SCFI Productos eléctricos conductores requisitos de seguridad.
- NMX-J-012-ANCE Cables de cobre con cableado concéntrico para usos eléctricos.
- ASTM B-8 Standard Specification For Concentric-Lay-Stranded Copper Conductors, hard, Medium-hart or soft.

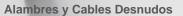
PRINCIPALES APLICACIONES

- Los cables de cobre en función de su temple y construcción, se usan sobre aisladores en líneas aéreate distribución eléctrica.
- En conexiones de neutros y puestas a tierra de equipos y sistemas eléctricos.
- Como conductores principales de conductores eléctricos aislados.

CARACTERÍSTICAS

- El material de los cables, es cobre de alta pureza con un contenido mínimo de 99,9% de cobre.
- Los cables se fabrican en construcción concéntrica.
- Se elaboran en calibres de 0,519 1 a 506,7 mm2 (20 AWG a 1 000 kcmil).
- Temple duro, semiduro o suave dependiendo de las aplicaciones.
- Estos productos se ofrecen en empaques de carrete.

- Por su alta conductividad eléctrica el cobre es el metal ideal para las instalaciones eléctricas.
- Los conductores de cobre son resistentes a la corrosión.
- Ofrecen una gran resistencia mecánica.
- Mayor flexibilidad que el alambre por su construcción.



Cable de Cobre Desnudo

								CABLE	DE COBR	E DES	NUDO							
			Cap. de cond.		TE	MPLE	DURO			TEM	PLE SI	EMIDURO			т	EMPLE SU	AVE	
Calibre AWG/	Área nom. de la secc.	Peso	de corrie-			CLAS	E AA				CLAS	SE A				CLASE E	3	
kcmil	trans- versal	aprox.	nte(1)	Núm. de artículo	Núm. de hilos	Esf. a la rup.	Resis. Eléc. CD a 20°C	Diáme- tro total nominal	Núm. de artículo	de	Esf. a la rup.	Resis. Eléc. CD a 20°C	Diáme- tro total nominal	Núm. de artículo	Núm. de hilos	Esfuerzo a la ruptura	Resis. Eléc. a CD a 20°C	Diáme - tro total nominal
	mm²	kg/km	Amp.			MPa	ohm / km	mm			MPa	ohm / km	mm			MPa	ohm / km	mm
20	0,519	4,71												DL78	7	285	33,9	0,92
18	0,823	7,47												J163	7	275	21,4	1,16
16	1,307	11,85												DL79	7	275	13,5	1,46
14	2,082	18,88												H698	7	265	8,45	1,85
12	3,307	29,99												H491	7	265	5,32	2,33
10	5,260	47,70												H492	7	265	3,34	2,93
8	8,367	75,87	90											H454	7	265	2,10	3,70
7	10,55	95,70	110											DL81	7	265	1,67	4,16
6	13,30	120,6	130											H493	7	265	1,32	4,67
5	16,76	152,1	150											DL82	7	265	1,05	5,24
4	21,15	191,8	180	DL54	3	395	0,865	6,46	A080	7	315	0,861	5,88	N113	7	265	0,832	5,88
3	26,67	241,8	200	DL55	3	395	0,686	7,25	DL71	7	315	0,682	6,61	H583	7	265	0,660	6,61
2	33,62	304,9	230	DL56	3	385	0,544	8,14	A079	7	315	0,541	7,42	H495	7	265	0,523	7,42
1	42,41	384,6	270	DL57	3	380	0,431	9,14	DL72	7	310	0,429	8,33	K637	19	265	0,415	8,43
1/0	53,48	484,9	310	A065	7	395	0,342	9,36	A083	7	310	0,340	9,36	H481	19	265	0,329	9,47
2/0	67,43	611,4	360	A066	7	390	0,271	10,51	A084	7	305	0,270	10,51	H482	19	265	0,261	10,63
3/0	85,01	770,9	420	A067	7	385	0,215	11,80	A085	7	305	0,214	11,80	H483	19	265	0,207	11,94
4/0	107,2	972,1	480	A068	7	380	0,171	13,25	A086	7	300	0,170	13,25	H484	19	255	0,164	13,40
250	126,7	1 149	540	DL58	12	390	0,144	15,24	A087	19	310	0,144	14,57	H496	37	265	0,139	14,62
300	152,0	1 378	610	DL59	12	385	0,120	16,69	A088	19	310	0,120	15,96	H497	37	265	0,116	16,01
350	177,3	1 608	670	DL60	12	380	0,103	18,02	A089	19	305	0,103	17,24	H498	37	265	0,099 2	17,29
400	202,7	1 838	730	DL61	19	390	0,090 3	18,43	A090	19	305	0,089 8	18,43	H499	37	255	0,086 8	18,49
450	228,0	2 068	780	A073	19	385	0,080 2	19,55	A091	37	310	0,079 8	19,61	H559	37	255	0,077 2	19,61

500	253,4	2 298	840	DL62	19	385	0,072 2	20,61	A092	37	310	0,071 8	20,67	H594	37	255	0,069 4	20,67
550	278,7	2 527	880	DL63	37	395	0,065 6	21,68	DL73	37	310	0,065 3	21,68	DL83	61	265	0,063 1	21,71
600	304,0	2 757	940	DL64	37	395	0,060 2	22,64	DL74	37	310	0,059 9	22,64	DL84	61	265	0,057 9	22,67
650	329,4	2 987	990	DL65	37	395	0,055 5	23,57	DL75	61	310	0,055 3	23,60	DL85	61	255	0,053 4	23,60
700	354,7	3 216	1 040	DL66	37	390	0,051 6	24,46	DL76	61	310	0,051 3	24,49	DL86	61	255	0,049 6	24,49
750	380,0	3 446	1 090	DL67	37	390	0,048 1	25,31	A094	61	310	0,047 9	25,35	DL87	61	255	0,046 3	25,34
800	405,4	3 676	1 130	DL68	37	385	0,045 1	26,15	U360	61	310	0,044 9	26,18	DL88	61	255	0,043 4	26,18
900	456,0	4 135	1 220	DL69	37	385	0,040 1	27,73	DL77	61	310	0,039 9	27,77	DL89	61	255	0,038 6	27,77
1 000	506,7	4 595	1 300	DL70	37	385	0,036 1	29,23	A095	61	310	0,035 9	29,27	R835	61	255	0,034 7	29,27

NOTA: Datos aproximados sujetos a tolerancias de manufactura. (1) Calculada para un conductor desnudo, expuesto al sol, operando a una temperatura de 75 °C. Temperatura ambiente: 25 °C, velocidad del viento: 0,61 m/s y emisividad térmica relativa de la superficie del conductor; 9 (2) Estos valores se dan como información ya que la NOM-063 no los especifica.

Cable de Cobre Desnudo

Cable para Apartarrayos

DESCRIPCIÓN GENERAL

Conductor desnudo formado por varios hilos de cobre o aluminio en temple suave, dispuestos en pares y cuadretes cableados entre sí.

ESPECIFICACIONES

• UL 96A Installation requirements for Lighting Protection Systems (Requerimientos de las instalaciones para sistemas de protección de alumbrado).

PRINCIPALES APLICACIONES

 Se utilizan para la interconexión de puntas, bajadas y varillas de tierra en los sistemas de apartarrayos de edificios y construcciones en general.

CARACTERÍSTICAS

- El material de los alambres es cobre de alta pureza con un contenido mínimo de 99.9% de cobre, o aluminio con aleación 1350.
- Temple suave.
- Se fabrican en calibres de 29,0 a 107,0 mm2.

- Por su alta conductividad fácilmente da paso a descargas atmosféricas.
- Su construcción permite un rápido enfriamiento o disipación de calor.
- Alta resistencia a la corrosión.
- Su construcción flexible permite seguir el contorno de pretiles, techos y aristas durante su instalación.

Cable para Apartarrayos

CABLE VIAKON® PARA APARTARRAYOS										
Número de Artículo	Calibre	Metal	Clase	Número de hilos	Diámetro total aproximado	Peso total aproximado				
	mm2				mm	kg / km				
G080	29,0	Cu	I	29	9,7	275,7				
K467	32,0	Cu	I	32	12,0	307,4				
V141	50,0	Al	I	24	13,7	139,1				
J015	58,0	Cu	II	28	13,7	532,6				
Q558	67,4	Cu	II	32	17,0	618,1				
V661	85,0	Cu	II	32	19,1	781,8				
V137	90,0	Cu II		28	17,3	846,4				
AV53	107,0	Cu	II	32	21,4	982,3				

NOTA: Datos aproximados sujetos a tolerancias de manufactura.

Cable para Apartarrayos

